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ABSTRACT:  Interoperability strategies are prescribed and implied by DoD, Joint, and Service interoperability policy 
documents, especially master plans, but the technical alternatives for specifying a distributed computing architecture are 
not described in terms of network and application cost/performance trade-offs.  What are the technical alternatives?  
What are their cost/performance trade-offs?  Do the alternatives reflect the most recent and most promising technology 
advancements?  Are they flexible enough to easily incorporate and integrate future technology advances?  Are they 
likely to result in significant improvements to real, physical, end-to-end interoperability?  This paper provides a 
“Rosetta Stone,” in the form of two hyper cubes, to help C4ISR system and simulation program managers, developers, 
and users, summarize, sort out, compare, contrast, and understand the cost/performance trade-off implications of se-
lecting a specific technical interoperability strategy.  One hypercube depicts three network performance trade-offs, scal-
ability, reliability, and delay (latency), and the other hypercube shows application performance trade-offs, runtime, 
complexity, and development time/cost, associated with the adoption of each technical interoperability strategy.  To-
gether, they enable a C4ISR system or simulation program manager or developer to carefully weigh the performance 
trade-offs associated with selecting a particular technical interoperability strategy before making a final decision. 
 
1. INTRODUCTION 

 
When French Engineer M. Boussard unearthed the 
Rosetta stone in 1799, it ultimately revealed the secret 
of translating Egyptian hieroglyphics, something that 
had eluded man for almost two thousand years.  
(Brewer 2000) 
 

“The hardest thing in the world to understand 
is income tax.”  -- Albert Einstein 

 
Interoperability strategy, though not as difficult to un-
derstand as hieroglyphics or income tax, has remained 
extremely difficult to comprehend.  This article pro-
vides a Rosetta stone to C4ISR (Command, Control, 
Communications, Computers, Intelligence, Surveil-
lance, and Reconnaissance) system and simulation pro-
gram managers, developers, and users that will enable 
them to unravel the interoperability strategy puzzle. 
 

2. INTEROPERABILITY STRATEGY 
 
The purpose of this paper is to help C4ISR system and 
simulation program managers, developers, and users, 
summarize, sort out, compare, contrast, and understand 
the cost/performance trade-off implications of selecting 
a specific technical interoperability strategy.  Interop-
erability is severally defined here as: 
 

“The ability of the systems, units, or forces to pro-
vide services to and accept services from other 
systems, units, or forces, and to use the services so 
exchanged to enable them to operate effectively to-
gether.  The conditions achieved among communi-
cations-electronics systems or items of communi-
cations-electronics equipment when information or 
services can be exchanged directly and satisfacto-
rily between them and/or their users.” (CJCS 
1995) 

 
“The ability of a model or simulation to provide 
services to and accept services from other models 
and simulations, and to use the services so ex-
changed to enable them to operate effectively to-
gether.” (DoD 1994) 
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Strategy is used here to mean a set of goals or objec-
tives, and the means of achieving them. It is an ap-
proach or method of getting something done.  
(Comerford and Callaghan 1999) 
 
3. HYPERCUBES – FOR VISUALIZING 

COST/PERFORMANCE TRADEOFFS 
 
The approach taken to analyzing interoperability strat-
egies is to plot each strategy with two sets of perform-
ance attributes or dimensions, in two separate hyper 
cubes, with one hypercube representing network per-
formance dimensions, and the other hypercube repre-
senting application performance dimensions, as shown 
in Figures 3.1 and 3.2.  Various interoperability strate-
gies can then be plotted as points in the three-dimen-
sional space of each hypercube, with the origin of each 
hypercube representing the reference point, architec-
ture compliance (HLA and DII COE), for all the other 
strategies. Each axis or dimension in each hypercube is 
a nominal scale, with each plotted point representing 
nominal values  (more than, less than, the same as) 
normalized to the origin or reference point.  The per-
formance dimensions in each hypercube are assumed to 
be orthogonal to one another to permit each interopera-
bility strategy to be plotted in three-dimensional space, 
even though they may not always be completely inde-
pendent of each other all the time.  In this manner, the 
cost-performance tradeoffs of each interoperability 
strategy can then be visualized, compared, contrasted, 
and more easily understood. 
 
3.1 Network Performance Dimensions Hypercube 
 
As can be seen in Figure 3.1, network performance 
dimensions include scalability, delay, and reliability, 
where: 
 
Scalability is defined as: 
 

“… the ability of a computer application or product 
(hardware or software) to continue to function well 
as it (or its context) is changed in size or volume in 
order to meet a user need. Typically, the rescaling is 
to a larger size or volume. The rescaling can be of 
the product itself (for example, a line of computer 
systems of different sizes in terms of storage, RAM, 
and so forth) or in the scalable object's movement to 
a new context (for example, a new operating sys-
tem).  It is the ability not only to function well in the 
rescaled situation, but to actually take full advantage 
of it.” (Thing 2001)  

 

Delay is used as “1) In a network, latency, a synonym 
for delay, is an expression of how much time it takes 
for a packet of data to get from one designated point to 
another. In some usages (for example, AT&T), latency 
is measured by sending a packet that is returned to the 
sender and the round-trip time is considered the 
latency.  2) In a computer system, latency is often used 
to mean any delay or waiting that increases real or per-
ceived response time beyond the response time de-
sired.” (Thing 2001) and … 
 
Reliability is taken to mean,  
 
“An attribute of any system that consistently produces 
the same results, preferably meeting or exceeding its 
specifications.  The term may be qualified, e.g., soft-
ware reliability, reliable communication.” (Howe 1997) 
 
Similarly, reliable communication is, “Communication 
where messages are guaranteed to reach their destina-
tion complete and uncorrupted and in the order they 
were sent.” (Howe 1997) 
 
3.2 Application Performance Dimensions 

Hypercube 
 
Application performance dimensions are similarly de-
picted in Figure 3.2.  They include development 
time/cost, complexity, and runtime, where: 
 
The operational definition of application development 
time/cost used here is “the total man-hours, calendar 
time, and monetary cost required to design, develop, 
test, document, market, and package a fully operational 
version of the application.” 
 
Application complexity can be defined in terms of its 
algorithms, “The level in difficulty in solving mathe-
matically posed problems as measured by the time, 
number of steps or arithmetic operations, or memory 
space required (called time complexity, computational 
complexity, and space complexity, respectively).  The 
interesting aspect is usually how complexity scales 
with the size of the input (the "scalability"), where the 
size of the input is described by some number N.  Thus 
an algorithm may have computational complexity 
O(N^2) (of the order of the square of the size of the in-
put), in which case if the input doubles in size, the 
computation will take four times as many steps.” 
(Howe 1997) 
 
Application complexity can also be defined in terms of 
the number of source code fragments (modules) and 
the number of control flow paths that connect them in a 
flowgraph of the application.  A well-known metric, 
Cyclomatic Complexity, V=E-N+2, was devised to 
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Table 3.1  Interoperability Strategies’ Network Dimensions
3 
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Figure 3.2  Interoperability Strategies’ Application Dimensions
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Table 3.2  Interoperability Strategies’ Application Dimensions 
4 
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quantify this type of complexity. (McCabe 1976)  Sig-
nificantly, there is a correlation between complexity 
and the number of faults in an application. (Yacoub, et 
al. 1999) and … 
 
Runtime is defined as, “the period of time during which 
a program is being executed, as opposed to compile 
time or load time.” (Howe 1997) 
 
4. INTEROPERABILITY STRATEGIES –

ANALYSIS AND DISCUSSION 
 
Interoperability strategies are plotted in Figures 3.1 and 
3.2, and are listed in Tables 3.1 and 3.2.  The rationale 
for plotting each strategy is analyzed, discussed, and 
explained in the following sections. 
 
4.1  Architecture Compliance 
 
Two distributed computing architectures are mandated 
by the Joint Technical Architecture (JTA) for military 
applications, DII COE (Defense Information Infra-
structure Common Operating Environment) for C4ISR 
system applications, and the HLA (High Level Archi-
tecture) for M&S (Modeling and Simulation) applica-
tions. (DISA 1997a) (USD(A&T) 1996)  Since all 
military applications must comply with these architec-
tures, architecture compliance is used here as the refer-
ence point for normalizing cost and performance at-
tributes of all the other interoperability strategies. 
 

4.1.1  DII COE (Defense Information 
Infrastructure Common Operating Environment).   
 
DII COE provides a standardized operating environ-
ment for command and control applications.  It in-
cludes application program interfaces (APIs) for differ-
ent types of applications such as Service Command and 
Control (C2), common support applications (e.g., mes-
sage processing), infrastructure services (e.g., commu-
nications), a kernel (e.g., Motif), and a shared data en-
vironment (SHADE) that includes various databases 
such as intelligence.  These interfaces and services are 
implemented as concentric layers that reside on top of 
the host computer’s operating system. (DISA 1997b) 
 

4.1.1.1  DII COE Advantages and 
Disadvantages.  DII COE’s principle advantages 
include: 
 
• Segmented C4ISR applications behave in a pre-

dictable, familiar, consistent, uniform manner. 
• Compliant applications are generally compatible 

with one another. 

• DII COE standards and specifications are closely 
controlled by DISA with frequent reviews and 
widespread participation by the Services and other 
users. 

 
DII COE also has some disadvantages: 
 
• DII COE compliance at Level 5 does not ensure 

that C4ISR applications will necessarily be 
interoperable with one another. (Sutton 1999) 

• DII COE does not provide all the interfaces or 
services required by simulations, e.g., time 
management.  As a result, simulations must run on 
a separate distributed computing architecture such 
as HLA.  This prevents C4ISR applications from 
being inherently interoperable with simulations. 

• DII COE is not a true open-systems standard in the 
sense that other distributed computing architec-
tures are, such as CORBA (Common Object 
Request Broker Architecture). 

 
4.1.2  HLA (High Level Architecture). 

 
“HLA is the technical architecture for DoD Simula-
tions.  (It provides) major functional elements, inter-
faces, design rules, pertaining to all DoD simulation 
applications, and providing a common framework 
within which specific system architectures can be de-
fined.” (AEgis 1998) 
 

4.1.2.1  HLA Advantages and Disadvan-
tages.  An excellent comparison of three distributed 
computing architectures, HLA, CORBA, and RMI 
(Remote Method Invocation), which clearly explains 
their relative advantages and disadvantages, is summa-
rized in Table 4.1.2.1. (Buss and Jackson 1998) 
 
Additional objections to HLA include (Davis and 
Moeller 1999): 
 
• HLA does not scale well.  It scales as N2, while 

other distributed computing architectures, such as 
CORBA, scale as N, because they provide direct 
communication between objects. 

• It doesn’t provide a hierarchical system-of-systems 
modeling framework for C4ISR systems. 

• It isn’t extensible or evolvable to new distributed 
computing environments such as on-line planning 
and control, and multiple-use design, execution, 
and training. 

• It acts as a barrier to incorporating advancements 
in computing and networking technologies 
because it was designed to preserve and reuse 
existing legacy models and simulations. 
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Other serious HLA problems have been identified 
(Nance 1999): 
 
• HLA provides data exchange mechanisms such as 

data formats, but no metadata.  As a result, data 
exchange can’t evolve as technology changes. 

• HLA suffers from time management problems.  
Dissimilar time management mechanisms, e.g., 
one federate time-stepped (e.g., EADSIM), and 
one federate event-stepped (e.g., NSS), introduce 
computational inefficiencies, such as slower 
runtime. 

• Incompatible timing granularity (time scale dif-
ferences) can cause serious faults in parallel 
federates.  Conservative federates may experience 
slower runtimes or crashes, and optimistic 
federates have a higher chance of having time 
errors. 

 
 
 

 
 
4.2  Gateway 
 
A gateway is, “a device that connects two systems, 
especially if the systems use different protocols.  For 
example, a gateway is needed to connect two 
independent local networks, or to connect a local 
network to a long-haul network.” (Stallings 1994) 
 
A transport gateway “moves data from one type of 
network to another, typically by embedding all of the 
information associated with one type of protocol into 
another.”  There are two approaches used.  Tunneling 
involves passing traffic from one type of network 
through another type of network, e.g., one gateway 
inserts SNA data into TCP/IP packets and another 
gateway extracts the data from the packets.  With 
encapsulation, a workstation embeds a foreign protocol 
into its local protocol and sends it to a gateway, which 
then extracts it and sends it to the appropriate network.  
Since gateways introduce overhead and delay into the 
network, they are plotted in the hypercube octants with 
more delay and slower runtime. (Breit 1999)   

ATTRIBUTE HLA/RTI CORBA RMI 
Types of Applications 
Supported 

 
Legacy 

 
Legacy 

 
New 

Programming Languages 
Supported 

 
Ada, C++, Java, 
CORBA IDL 

Ada, C, C++, Java, 
OO-COBOL, 
Smalltalk 

 
Java 

Direct Communications 
Between Objects 
Provided 

 
No 

 
Yes 

 
Yes 

Transfer of Object 
Ownership Provided 

 
Yes 

 
No 

 
No 

Time Management 
Services Provided 

 
Yes 

 
No 

 
No 

Security Management 
Services Provided 

 
No 

 
No 

 
Yes 

Network 
Communications 
Protocols Specified 

 
Left to RTI vendor 

 
IIOP 

 
TCP/IP 

Cross-Language 
Compatibility Overhead 

 
RTI implementer 

 
None 

 
Not compatible 

Meta-Language 
Provided 

 
None 

 
IDL 

 
None 

 

Table 4.1.2.1  Comparison of Distributed Computing Architecture Attributes
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4.2.1  Gateway Advantages and 

Disadvantages. 
 
The primary advantage of using a gateway is its ability 
to permit an application written for one language, sys-
tem, and architecture, to interoperate with an applica-
tion written for a different language, system, and ar-
chitecture, without having to reprogram either applica-
tion.  The gateway interoperability strategy, therefore, 
is plotted in the hypercube octant with lower develop-
ment time/cost.  Legacy applications written for the 
DIS (Distributed Interactive Simulation) architecture, 
for example, can interoperate with HLA-applications 
without having to rewrite them to be compliant with 
HLA. 
 
Unfortunately, gateway disadvantages are legion and 
they far outweigh its primary advantage.  Significant 
gateway disadvantages include (Dodge 2000): 
 
• A point-to-point gateway connection creates a sin-

gle point of failure, which reduces system reliabil-
ity. 

• Gateways can become communications bottle-
necks that reduce communications reliability.  The 
Army Aviation and Missile Command (AMCOM), 
for example, experienced severe data anomalies, 
such as erroneous roll rates, altered data, and ap-
pearance field perturbations, in its HLA/DIS gate-
way. (Hall, et. al. 1998) 

• Gateways introduce delays into a network, which 
can result in slower application runtime and net-
work instability.  AMCOM, for example, experi-
enced network delays of up to 12 seconds during 
periods of peak DIS-HLA translation.  They also 
experienced slower application runtimes and 
crashes caused by gateway instability and gateway 
disenfranchisement with HLA RTI (Run Time In-
frastructure). (Hall, et. al. 1998) 

• Gateways scale poorly (N2), which makes system 
implementation and maintenance more complex. 

 
Gateways, for the reasons noted above, are plotted in 
the Less Scalable, More Delay, Less Reliable, Slower 
Runtime, More Complex, Lower Development 
Time/Cost octants of Figures 3.1 and 3.2.  It is also in-
teresting to note that networking technology advances 
may eventually eliminate the need for gateways.  High-
speed LAN(Local Area Network)s that run Internet 
Protocol will plug into WAN(Wide Area Network)s via 
Sonet technology on carrier backbones, or by plugging 
directly into the WAN’s fiber-optic backbone. (Adhi-
kari 1998) 
 
 

4.3  Middleware 
 
Middleware is “a class of software whose purpose is to 
simplify the complex problem of developing and using 
applications on different platforms of computers, con-
nected over different types of networks. In other words, 
Middleware is a layer of software that supports multi-
ple communication protocols, multiple programming 
languages, and can be executed on different computer 
platforms. It fits between the application program and 
the network interface, and is in effect a set of Applica-
tion Program Interfaces (APIs) that software program-
mers can use to avoid concerns about the underlying 
network and operating system software.” (Whiting 
1994) 
 

4.3.1  Middleware Advantages and 
Disadvantages. 
 
As pointed out in its definition, the main advantage of 
middleware is that it allows application programs to be 
written in different programming languages to operate 
on different kinds of computer hardware, operating 
systems, and networks, without having to rewrite the 
application program for each different environment. 
 
Unfortunately, middleware advantages are offset by a 
number of disadvantages: 
 
• Scalability is an important problem.  “Most 

middleware has been designed with procedural 
protocols in mind, but many systems evolve to use 
various nonprocedural ones: Multicast-based event 
frameworks, remote-execution frameworks, and 
mobile agent frameworks all exist in one form or 
another, but the most common versions are all un-
comfortably grafted on the same old stuff.” (Milo-
jicic 1999) 

• Delay is another significant problem, “… conven-
tional ORB-based systems incur significant 
throughput and latency overhead.” (Campbell, et 
al. 1999) 

• Reliability is also considered problematic. “In 
many cases, OMG found, code that runs above the 
operating system is more error prone than the 
commercial RTOSes (real-time operating sys-
tems), which have been wrung out well during 
years of usage.” (Costlow 1998) 

• Complexity and application development time/cost 
present even greater difficulties.  Middleware ad-
aptations  to new types of applications, such as 
multimedia, real-time, and mobility, have spawned 
adaptations and evolutions such as Minimal 
CORBA, Real-time CORBA, and interceptors, but  
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“… in general there is no principled approach to 
these adaptations and evolutions.  They are carried 
out in ad-hoc ways, yielding application program-
ming difficulties and inordinate system complex-
ity.” (Eliassen, et al.1999) 

• Application runtime is also problematic.  “The cur-
rent generation of middleware has a deserved 
reputation for running slowly.  In an ORB-based 
middleware system, developers simply model the 
legacy component using the same IDL they use for 
creating new objects, then write wrapper code that 
translates between the standardized bus and the 
legacy interfaces.” (Campbel, et al. 1999) 

 
Considering the numerous examples above, 
middleware is plotted in the Less Scalable, More 
Delay, Less Reliable, Higher Development Time/Cost, 
More Complex, and Slower Runtime octants of the 
hyper cubes. 
 
4.4  Componentware 
 
Componentware or Component Software is 
“…application development … using larger building 
blocks than lines of code. DARPA used to call this 
mega-programming.”  It promises “ … rapid applica-
tion assembly from components -- Leggo-like reuse to 
build large systems from known components.”  “Com-
ponents themselves do not have to be tested and re-
tested. It may be possible to derive properties of con-
figurations of components from the properties of the 
component parts and the glue holding components to-
gether. Because all of the interfaces between compo-
nents are standardized, it is possible to mix components 
from different manufacturers in a single system.  
Similarly, the goal of component software is to stan-
dardize the interfaces between software components so 
that they too can work together seamlessly.” (Compo-
nentware Glossary 2001) 
 

4.4.1  Componentware Advantages and 
Disadvantages. 
 
Componentware’s chief advantage is its promise of 
lower application development time and cost, but it 
may be awhile before that promise is realized.  DCOM 
(Distributed Component Object Model) APIs (Appli-
cation Programming Interfaces), for example, “are not 
structured and presented in an intuitive way for build-
ing distributed client/server applications.  As a result, 
… the DCOM architecture often involves non-intuitive 
programming hacks to provide the functionality re-
quired in a client/server environment.” (Wang, et al. 
1997) 

 
Componentware’s numerous disadvantages include: 
 
• Scalability is a problem because “… deployment 

of … (distributed, loosely-coupled, heterogeneous, 
asynchronous event-driven) systems at the scale of 
the Internet imposes new challenges that are not 
met by existing technology.  In particular, the 
technology to support an event-based architectural 
style is well developed for local-area networks, … 
but not for wide-area networks. One of these sys-
tems, Yeast, … is a general-purpose platform for 
building distributed applications in an event-based 
architectural style, and it supports event-based in-
teraction quite naturally within local-area net-
works. However, its centralized-server architecture 
limits its scalability to wide-area networks.” 
(Rosenblum, et al. 1998) 

• Componentware can also introduce delays into a 
network – “There are a number of challenging is-
sues that need to be addressed for this approach: 
communication delays have to be taken account, as 
well as the overhead to locate CORBA objects be-
cause of CORBA location transparency.” (Le and 
Chakravarthy 1998) 

• Reliability of componentware is also troubling.  
“The OS (Operating System) is oblivious to the 
component abstraction and cannot effectively pro-
vide a service tailored to individual components.  
In a component-based application, a file opened by 
one component might inadvertently be manipu-
lated or closed by another.  Further, lack of isola-
tion tends to result in one component’s bugs 
crashing another ...” (Mendelsohn 1997) 

• Componentware seems to be inordinately complex 
at its present level of maturity.  “The introduction 
of composable simulation, while providing im-
proved flexibility in simulations, can actually in-
crease the level of complexity in creating a par-
ticular target simulation.” (Aronson 2000)  
“Classes/objects implemented in one programming 
language cannot interoperate with those implanted 
in other languages.  In some object-oriented 
languages even the same compiler version has to 
be used so that objects become interoperable.” 
(Pree 1997) 

• Runtime also seems problematic,  “Although fre-
quent procedure calls and message sends are im-
portant structuring techniques in object-oriented 
languages, they can also severely degrade applica-
tion run-time performance.” (Grove 1998) 

 
One can conclude, therefore, that componentware 
should be  plotted in the Less Scalable, More Delay, 
Less Reliable, Lower Development Time/Cost, More 
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Complex, and Slower Runtime octants of the hyper 
cubes 
 
4.5 Embedded System 
 
An embedded system is “Hardware and software which 
forms a component of some larger system ... Often it 
must provide real-time response.” (Howe 1997)  This 
definition is oriented toward microprocessor imple-
mentations.  In the broader sense, this definition is used 
here to include embedded software, embedded simula-
tion, and embedded training – it might only include 
software. 
 

4.5.1  Embedded System Advantages and 
Disadvantages. 
 
• Embedded systems do not generally scale well,  

“… RPC toolkits are well suited for conventional 
request/response-style applications running on 
low-speed networks.  Until recently, however, the 
QoS specification and enforcement features of 
conventional DOC middleware and ORBs, as well 
as their efficiency, predictability, and scalability, 
have not been suitable for applications with hard 
real-time requirements.” (Schmidt 1999) 

• Embedded system delay and runtime are problem-
atic.  “Conventional ORBs often incur significant 
throughput and latency overhead.  This overhead 
stems from excessive data copying, non-optimized 
presentation layer conversations, internal message 
buffering strategies that produce non-uniform be-
havior for different message sizes, inefficient de-
multiplexing algorithms, long chains of intra-ORB 
virtual method calls, and lack of integration with 
underlying OS and network QoS mechanisms.” 
(Schmidt 1999) 

• The reliability of embedded systems is also cause 
for concern.  “… CORBA, DCOM, and RMI do 
not require an ORB to notify clients when trans-
port layer flow control occurs.  Therefore, it is 
hard to write portable code and efficient real-time 
applications that will not block when ORB end-
system and network resources are temporarily 
unavailable.  Likewise, conventional DOC ORBs 
do not propagate exceptions stemming from 
missed deadlines from servers to clients, which 
makes it hard to write applications that behave 
predictably when congestion in the communication 
infrastructure or end-systems causes deadlines to 
be missed.” (Schmidt 1999) 

• Similarly, application development time, cost, and 
complexity are greater than they are for other 
interoperability strategies.  Whenever one system 
is designed and built to reside within another, dis-
similar system, the developer must then account 

for new interfaces and interactions that are often 
novel, unplanned, and unexpected.  “… real-time, 
embedded system software development has his-
torically lagged mainstream software development 
methodologies.  As a result, real-time embedded 
software systems are costly to evolve and main-
tain.  Moreover, they are so specialized that they 
cannot adapt readily to meet new market opportu-
nities or technology innovations.” (Schmidt 1999) 

 
There has been considerable research directed at mak-
ing simulations interoperable with C4ISR systems, and 
embedded systems are one of the specific strategies be-
ing considered.  Various approaches within this strat-
egy include: (1) embedding the simulation application 
directly within the C4ISR application (a.k.a. embedded 
simulation or embedded training); (2) embedding HLA 
RTI within DII COE at the common applications level; 
(3) at the common services level; and (4) at the kernel 
level.  Since both DII COE and HLA RTI are forms of 
middleware built on top of operating systems, and 
since both provide data and object management ser-
vices, how will the embedded system reconcile how 
two different sets of common services are accessed and 
used?  How will one application, service, or operating 
system avoid becoming disenfranchised with the other?     
 
Considering the above advantages and disadvantages, it 
seems reasonable to plot embedded systems in the Less 
Scalable, More Delay, Less Reliable, Higher Develop-
ment Time/Cost, More Complex, and Slower Runtime 
octants of the hyper cubes. 
 
4.6 Scripting/Glue Language 
 
Scripting or Glue languages “assume that a collection 
of useful components already exist in other (proce-
dural) languages.  They are not intended for writing 
applications from scratch but rather for combining 
components.” Examples of scripting languages include 
Perl, Python, Rexx, Tcl, Visual Basic, and Unix shells. 
(Ousterhout 1998) 
 

4.6.1  Scripting/Glue Language Advantages 
and Disadvantages. 
 
Advantages include (Ousterhout 1998): 
 
• Scripting languages provide better scalability be-

cause, “A type-less language makes it much easier 
to hook together components.  There are no a pri-
ori restrictions on how things can be used.”  

• Scripting language lowers application develop-
ment time and cost – “In every case, the scripting 
version required less code and development time 
than the system programming version.” 
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• Application complexity is also reduced because 
scripting languages are type-less.  New objects can 
be used with existing interfaces without having to 
write conversion code to translate between differ-
ent types of objects. 

 
Unfortunately there’s still a downside: 
 
• Scripting languages provide slower runtimes and 

longer delays than procedural languages because 
they use interpreters instead of compilers. 

• The type-less nature of scripting languages is also 
a potential source of unreliability because gluing 
applications don’t check for errors.  Instead, that 
task is left to the components built with systems 
programming languages. 

 
As indicated above, Scripting/Glue Language is plotted 
in the More Scalable, Less Reliable, More Delay, 
Lower Development Time/Cost, Slower Runtime, and 
Less Complex octants of the hyper cubes. 
 
4.7 Advanced Distributed Simulation (ADS) 
 
Advanced Distributed Simulation (ADS) has been de-
fined as, “any application or architecture which em-
ploys the characteristics of distribution and networking 
in a way which permits a number of nodes, entities, or 
devices to interact with each other for some common or 
shared purpose …” (Murphy and Roane 1999)  It was 
implemented in DARPA’s Synthetic Theater of War 
(STOW) Advanced Concept Technology Demonstra-
tion (ACTD), which culminated in the largest entity 
level simulation ever used for a distributed training ex-
ercise.  
 

4.7.1  ADS Advantages and Disadvantages. 
 
ADS’ advantages and disadvantages include (Cole, et 
al. 1998): 
 
• Improved scalability through bi-level multicast 

communications (IP [Internet Protocol] multicast 
LAN-to-LAN service over less dynamic ATM 
(Asynchronous Transfer Mode) point-to-
multipoint virtual circuit wide area service). 

• Lower network delay and faster application run-
times due to low-latency, high speed ATM com-
munications service, with assured low latency and 
guaranteed bandwidth through QoS (Quality of 
Service) reservation. 

• Decreased reliability of unicast traffic.  Multicast 
simulation data were signaled as VBR (Variable 
Bit Rate) point-to-multipoint SVCs (Switched 
Virtual Circuits), while unicast traffic was sent 

over UBR (Unspecified Bit Rate) SVCs.  VBR 
traffic had priority over UBR traffic, which was 
dropped first if network congestion was encoun-
tered. 

• Application complexity and development time/cost  
were somewhat higher with ADS than with simple 
architecture compliance (HLA/RTI on LAN) be-
cause special network communications equipment, 
such as the QCBMR (QoS-Capable, Bi-level, 
Multicast Router), had to be developed to support 
some of the new, advanced networking techniques. 

 
For these reasons, ADS is portrayed as a More Scal-
able, Less Delay, Less Reliable, Higher Development 
Time/Cost, More Complex, and Faster Runtime inter-
operability strategy in the hyper cubes. 
 
4.8 SPEEDES (Synchronous Parallel Environment 

for Emulation and Discrete Event Simulation) 
 
SPEEDES is a distributed simulation architecture that 
was specifically designed for parallel discrete-event 
simulation (PDES).  It was developed by JPL for 
NASA in 1990 and is licensed by NASA.  It includes 
application programming interfaces, management ser-
vices, a modeling framework, time management, an 
event processing engine, a communications library and 
interfaces. The Office of Naval Research selected 
SPEEDES in 1996 as the most promising simulation 
execution framework for simulation development. 
(Wallace 2000) 
 

4.8.1  SPEEDES Advantages and 
Disadvantages. 
 
SPEEDES’ advantages and disadvantages include: 
 
• SPEEDES scales very well.  For example, total 

event and message memory consumption during 
application execution increased only 10 percent as 
the number of processors was increased from 32 to 
96 nodes. (Steinman, et al. 1999) 

• Network delay is also less than that experienced 
with other distributed computing architectures.  
There has been less delay for shared memory im-
plementations (e.g., 11.3 usec) than TCP/IP im-
plementations (2 msec).  Latency as a function of 
message size remains low and constant for small 
messages, and then increases exponentially when 
the message begins to exceed the size of TCP/IP 
packets. (Van Iwaarden 1999) 

• SPEEDES is considered more reliable (Wallace 
2000) than other distributed computing architec-
tures by its proponents, but others warn that reli-
ability problems may still be encountered when 
“synchronizing a parallel discrete-event simula-
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tion: simulation code that runs correctly on a serial 
machine may, when run in parallel, fail catastro-
phically.” (Nicol and Liu 1997) 

• SPEEDES  application runtimes are also superior 
to those of other distributed computing 
architecture – which is what one would expect 
with parallel processors.  Recent tests 
demonstrated “nearly perfect speedup when going 
from 32 to 96 processors.” (Steinman, et al. 1999) 

• Application complexity is similarly reduced by the 
use of SPEEDES – “This mapping, or API trans-
lation, is implemented in a compatibility library, 
and allows the infrastructure model software to be 
linked to the SPEEDES libraries for runtime exe-
cution as a virtual single, composite simulation.” 
(Walace, et al. 2000) 

• SPEEDES also seems to contribute to lower appli-
cation development time and cost.  JSIMS Mari-
time, for example, achieved an average productiv-
ity of 640 SLOC/person-month, which compared 
quite favorably with an industry average of 200 
SLOC/person-month. (Wallace, et al. 2000) 

• Recent experience with SPEEDES, therefore, sug-
gests that it should be plotted as a More Scalable, 
Less Delay, More Reliable, Lower Development 
Time/Cost, Less Complex, and Faster Runtime in-
teroperability strategy in the hyper cubes. 

 
4.9 Architecture Integration 
 
Architecture integration is used here to mean an en-
tirely new, holistic distributed computing architecture 
that combines the advantages of each interoperability 
strategy while rejecting its disadvantages.  It means 
building a single adaptable, evolvable, open architec-
ture for both C4ISR applications and simulations that 
will optimize both network and application perform-
ance in a heterogeneous environment. 
 

4.9.1  Architecture Integration Advantages 
and Disadvantages. 
 
The architecture integration interoperability strategy is 
plotted in the optimum position of each hypercube be-
cause it represents the ideal strategy, with all of the 
strengths and none of the weaknesses of each individ-
ual strategy.  Some may view architecture integration 
as an overly ambitious and idealistic holy grail, while 
others view it as a perfectly logical conclusion of pre-
vious, like-minded research efforts. 
 
 
5.  CONCLUSIONS 
 
The following conclusions may be drawn from the 
above analysis, discussions, and explanations: 

 
• Network and application performance attributes, 

development time, and development cost can be 
evaluated and plotted in hyper cubes that permit 
program managers, system developers, and users 
to visualize, compare, and contrast their relative 
tradeoffs.  In this paper plotting points 
representing contending interoperability strategies 
on nominal scales of orthogonal network and 
application performance and cost dimensions did 
this. 

• The hypercube approach to visualizing and under-
standing cost/performance tradeoffs of interopera-
bility strategies requires some simplifying as-
sumptions that can rightfully be challenged.  Per-
formance dimensions are portrayed as being or-
thogonal to one another, but it is obvious that they 
are not entirely independent of each other.  Net-
work delays, for example, are related to communi-
cations reliability.  Application complexity is re-
lated to development time and cost, and so forth.  
The author understands this, but believes that the 
violation of strict independence is far outweighed 
by our ability to plot and visualize each strategy in 
the octant of the hypercube that represents the ap-
propriate combination of nominal values.  Also, 
each strategy is not mutually exclusive to the all 
the others.  Some strategies may be combined with 
others in a particular distributed computing archi-
tecture.  Gateways, for example, are often used 
with HLA.  The definitions of some strategies 
overlap.  HLA, for example, is considered to be 
middleware.  Nonetheless, the author believes that 
the usefulness of hyper cubes overshadows these 
simplifying assumptions. 

• Figure 3.1 suggests that gateways and middleware 
provide the least relative advantage in terms of 
network performance tradeoffs, while ADS and 
SPEEDES provide the most.  Scripting/Glue lan-
guages are only slightly better than gateways and 
middleware since they scale better and are useful 
for integration. 

• Figure 3.2 indicates that middleware and em-
bedded systems provide the least relative advan-
tage in terms of application performance tradeoffs, 
while SPEEDES provides the most.  ADS is the 
next best choice after SPEEDES because it pro-
vides faster application runtimes in long-haul envi-
ronments through multicasting and QoS.  Gate-
ways and componentware are only slightly better 
than middleware and embedded systems -- because 
gateways eliminate the need to reprogram legacy 
applications to make them architecture compliant, 
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while componentware permits new applications to 
be built from reused components. 

• Figures 3.1 and 3.2  both imply that SPEEDES is 
probably the best overall interoperability strategy 
in terms of tradeoffs.  It seems to be closer to the 
optimum strategy, architecture integration, than 
any other strategy. 

• Architecture integration is the optimum interopera-
bility strategy in the author’s view, because it 
would lead to a single, integrated, open systems, 
distributed computing architecture that could be 
used for both C4ISR and simulation applications.  
This would result in a single networking environ-
ment that would be vastly better and cheaper than 
the separate environments we have today.  Unfor-
tunately, political realities will probably prevent 
this from ever happening.  Others also feel that too 
many domain-specific compromises would prevent 
us from ever achieving universal interoperability. 

 
6.  RECOMMENDATIONS 
 
The following recommendations are made to improve 
interoperability: 
 
• Future research should be directed toward bench-

marking the performance and cost attributes of in-
teroperability strategies – so that actual measure-
ments of performance and cost can be plotted on 
interval scales (instead of the more subjective 
nominal scales).  This research should be con-
ducted in a controlled environment that facilitates 
repeatable experiments that yield consistent, 
comparable data. 

• The DoD should combine and leverage its research 
efforts and resources to design and build a single 
distributed computing architecture that can be used 
for both C4ISR and simulation applications.   Ar-
chitecture Integration should be employed as the 
interoperability strategy for achieving this goal be-
cause it leverages the experience and resources 
previously used to build other contending archi-
tectures.  This is the long-term solution. 

• In the short-term, the most promising 
interoperability strategy that has demonstrated the 
best performance/cost tradeoffs should be selected 
for adoption and improvement, while less promis-
ing strategies should be discarded.  SPEEDES 
should be examined more closely to determine 
whether it should be adopted as the best approach 
to achieving interoperability. 
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